

African Journal of Academic Publishing in

Science and Technology (AJAPST)

Online ISSN: 2957-644X

Volume 1, Issue 2, 2025

Page No: 1-15
Website: https://easrjournals.com/index.php/AJAPST/index

1 | African Journal of Academic Publishing in Science and Technology (AJAPST)

Securing Mobile Messaging on Android

Mabrouka Algherini *

Information Technology Department, Higher Institute of Sciences and Technology, Soukna-

Aljofra, Libya

*Corresponding author: kokyrbab1@gmail.com

Received: February 02, 2024 Accepted: March 27, 2025 Published: April 09, 2025
Abstract:

As the sensitive use of SMS grows every day, researchers have been devising ways to secure it. However, some

of the algorithms proposed by researchers or solutions that have flooded the market have not fully aided SMS

security, making it difficult to choose appropriate solutions that align with users' needs, which is key to protecting

sensitive information. Finding the right solution to secure SMS is still a problem today in sectors like banking,

E-commerce and even individual usage. The idea of using encryption is not new, but employing the right solution

to secure SMS is yet to be achieved by all. In this thesis, we analyzed and evaluated AES, Camellia and RC6

algorithms for securing SMS on Android platform and over the network. A comparative study was carried out on

these algorithms using performance metrics: Encryption, decryption, and key generation time. The result shows

that Camellia with key sizes 128, 192 and 256 bits was the fastest to encrypt a text while RC6 with key sizes 128,

192 and 256 bits was the fastest to decrypt a text. Camellia and RC6 with key sizes 128, 192 and 256 bits generate

keys at almost the same speed. AES of key sizes 128, 192 and 256 bits was slower in generating keys, encrypting

and decrypting a message when compared to Camellia and RC6. The findings from this research support the idea

of using Camellia and RC6 more often for SMS encryption.

Keywords: SMS, algorithms, sensitive information, encryption and decryption.

Introduction

Mobile devices have emerged as a necessary technology for communicating. The demand for mobile phones is

amazing that in 2010, 100.9 million mobile phones were shipped out worldwide and mobile phones is selling

more than personal computers today. There are about nine popular mobile operating systems (OS) installed on

mobile phones. In future, mobile phones may replace personal computers when it comes to e-mailing, instant

messaging, web browsing and SMS [1]. There is a large number of mobile phone users that prefer to use short

message service (SMS) as a form of communication more than mail-based service, voice call, Email and even

web-based communication having possess the three important element of communication which are good

response rate, fastness and inexpensive nature. SMS users tend to receive instant response when they send a

message to a recipient. They experience fast message delivery which also cheaper than the voice calls for mobile

communication [2].

Literature review

The first SMS message was first sent to a recipient in the United Kingdom in 1992 and ever since then the SMS

has grown to become a common communication tool for the masses. The SMS mobility, good response rate,

fastness and inexpensive nature make it the best bearer for mobile applications [3]. For many businesses and

government agencies, SMS play a huge role in their communication strategies. Moreover, individuals also use the

SMS to exchange information every day.

SMS comes with benefit such as allowing mobile phone users to swiftly send and receive various types of

important data or information like bank account details, usernames and passwords, social security numbers of

https://easrjournals.com/index.php/AJAPST/index

2 | African Journal of Academic Publishing in Science and Technology (AJAPST)

credit cards. These types of information or data are only meant for intended users and therefore it is important that

they are kept secured [3].

Some risks crops up when using SMS. SMS can be intercepted when transmitted over the network. That is, a

hacker using several techniques can tap a message that is sent over a network that does not guarantee protection

of SMS. If this happens, confidential information can be exposed to unauthorized persons. Another risk is that a

person can mistakenly send SMS to an unintended recipient and this will allow the wrong person to read the

sender’s message [4].

In our lives today, mobile phone devices have gained so much ground as becoming one of the most important

communication tools. Most people around the world depend on these devices to communicate with loved ones,

business partners and so on. An executive summary by GSMA titled The Mobile Economy states that as at March

2016 there are above 4.7 billion unique mobile phone subscribers on the GSM network.

GSM network mobile operators offer a wide range of services, out of those services offered the SMS stands tall

as regards communication. Most people prefer SMS when communicating compared to other services available.

This is because the SMS is cost-effective, fast and high response rate.

Problem formulation

Despite all the tangible and intangible benefits of SMS, SMS comes with security issues. The information that

goes with the SMS can be exposed to unwanted viewers or unauthorized persons and this is a big challenge to

user’s privacy. This may affect our rights as extremely important data exchange like credit card social security

numbers and logins to bank accounts are being seen by unauthorized persons. There are fraudulent activities that

can happen when an unauthorized person has access to customer’s online bank login details or credit card

information. Before the invention of SMS, this would not have been a problem as this extremely confidential

information would be kept safe in files with lock and keys but now can be visible in SMS (Jibril et al, 2014).

There are several encryption algorithms that have been designed to solve the security issues of SMS but finding

the best encryption algorithm should be key to protection of sensitive information. Using the right algorithm is an

issue and a problem.

The main aim of this article is providing a study on Securing for Mobile Messaging utilizing an Android gives by

a comprehensive insight on cryptography and encryption algorithms used in this research. The remain sections

are classified as follows: Section 2 presenting the methodology by defining cryptography and encryption citing

some examples. In section 3, the obtained results and its summary discussion have been presented along with their

subsections. Eventually, the article closes by the conclusion summary followed by the list of up to date references.

Material and methods

This section gives a comprehensive insight into cryptography and encryption algorithms used in this research.

1.1 Cryptography

Cryptography is the practice and study of techniques for securing communication and information by converting

it into a format that is unreadable to unauthorized users. It involves creating codes and ciphers to protect data from

adversaries. Here are some key concepts in cryptography:

Table 1: key concepts in cryptography [5]

key concepts Features

Encryption and

Decryption

• Encryption: The process of converting plain text into cipher text using a specific algorithm

and a key.

• Decryption: The reverse process, converting cipher text back into plain text using a key.

Keys

A key is a piece of information used in algorithms to encrypt and decrypt data. The security of

the cryptographic system often relies on the secrecy and complexity of the key.

Symmetric vs.

Asymmetric

Cryptography

• Symmetric Cryptography: Uses the same key for both encryption and decryption. Example:

AES (Advanced Encryption Standard).

• Asymmetric Cryptography: Uses a pair of keys — a public key for encryption and a private

3 | African Journal of Academic Publishing in Science and Technology (AJAPST)

key for decryption. Example: RSA (Rivest-Shamir-Adleman).

Hash Functions

Functions that convert an input (or 'message') into a fixed-size string of bytes. The output is

typically a digest that is unique to each unique input. They are commonly used in storing

passwords and ensuring data integrity. Example: SHA-256 (Secure Hash Algorithm).

Digital Signatures

A method of validating the authenticity and integrity of a message or document by using

asymmetric cryptography. A sender can sign a message with their private key, which can then

be verified by others with their public key.

Public Key

Infrastructure (PKI)

A framework that provides a set of roles, policies, hardware, software, and procedures needed

to create, manage, distribute, use, store, and revoke digital certificates and manage public-key

encryption.

Applications
Cryptography is used in securing online communications (SSL/TLS), digital currencies (like

Bitcoin), secure messaging apps, and more.

1.2 Existing Encryption Algorithm in Literature

Three symmetric encryption methods are reviewed, implemented, and evaluated so that they can be compared in

terms of efficiency in time. It is important to review a few kinds of literature about symmetric encryption.

A new Symmetric Algorithm called Dripto Jee Symmetric Algorithm (DJSA) using extended Mallick Saima

Asoke (MSA)was introduced by Chatterjee et al. In this solution, for generating key the ideal is to use a random

key generator. Keys generated will be used for encrypthe tion of required source file. Basically, a substitution

process is employed in which four characters is taken from files that have input values then look for corresponding

characters in the key matrix. After the whole process, ciphertext is found, it is then stored in another file.

Table 2: Summary of Key Algorithms [6].

Category Algorithm Key Size Use Case

Symmetric-Key Encryption

AES 128, 192, 256 bits Data encryption, SSL/TLS

DES/3DES 56/168 bits Legacy systems

Blowfish/Twofish
32–448/128–256

bits
General-purpose encryption

Salsa20/ChaCha20 256 bits High-speed encryption

Asymmetric-Key

Encryption

RSA 1024–4096 bits Key exchange, digital signatures

ECC 160–521 bits Modern systems, blockchain

Diffie-Hellman 1024–4096 bits Key exchange

Hash Functions

SHA-256 256 bits Data integrity, blockchain

SHA-3 224–512 bits Future-proofing

BLAKE2 Variable Password hashing, data integrity

1.3 Symmetric or Private Key Encryption

 It is a type of encryption where the same key is used for both encrypting and decrypting data as tabulated in Table

3. It is one of the oldest and most widely used encryption methods due to its simplicity, speed, and efficiency,

especially for encrypting large amounts of data.

Table 3: Comparison with Asymmetric-Key Encryption [7].

Feature Symmetric-Key Encryption Asymmetric-Key Encryption

Key Usage Same key for encryption/decryption Different keys for encryption/decryption

Speed Faster Slower

Key Distribution Challenging Easier (public keys can be shared)

Use Case Bulk data encryption Key exchange, digital signatures

Examples AES, DES, Blowfish RSA, ECC, Diffie-Hellman

1.3.1 AES or Rijndael Cipher

Equation 1 presented the AES calculation [8].

𝑛𝑟 = max{𝑛𝑏, 𝑛𝑘} + 6 (1)

4 | African Journal of Academic Publishing in Science and Technology (AJAPST)

Calculate the subkeys as in equation 2 :

𝐾0, 𝐾1, … . 𝐾n, 𝑓𝑟𝑜𝑚 𝑡𝑕𝑒 𝑘𝑒𝑦 𝐾 (2)

Compute the state by adding the plaintext block B and the key K as in equation 3:

𝑆 = 𝐵 ⊕ 𝐾0 (3)

For i= 1 to nr– 1

For the Sub-bytes round, each byte of the block is replaced by its substitute in an S-box.as in equation 4:

S = SubBytes(S) (4)

For the Shift-Row round, the block are made up of bytes 1 to 16 and shifted as in equation 5.

S = ShiftRow(S) (5)

For the Mix-Column round, the matrix multiplication is performed as in equation 6:

S = MixColumn(S) (6)

XOR the Add-RoundKey in the subkey as in equation 7:

S = Ki ⊕ S (7)

Repeat the Sub-Bytes and the Shift-Row rounds in order, respectively as in equations 4 and 5 the finally XOR

the Add-Round Key in the subkey as in equation 8:

S = Kn ⊕ S (8)

The transformation for the inverse can be described by considering the following steps: Calculate the subkeys as

in equation 9:

𝐾0, 𝐾1, … . 𝐾n, 𝑓𝑟𝑜𝑚 𝑡𝑕𝑒 𝑘𝑒𝑦 𝐾 (9)

Compute the state by adding the plaintext block B and the key K as in equation 10:

S = B ⊕ 𝐾n (10)

Performed the inverse for the Shift-Row as in equation 11:

S = InvShiftRow (S) (11)

Performed the inverse for the Sub-Bytes as in equation 12:

S = InvSubBytes(S) (12)

XOR the Add-RoundKey in the subkey as in equation 13:

S = Kn ⊕ S (13)

For I = nr – 1 to 1

XOR the Add-RoundKey in the subkey as in equation 14:

S = Ki ⊕ S (14)

Performed the inverse for the Mix-Column as in equation 15:

S = InvMixColumn(S) (15)

Repeat the inverse for Shift-Row and the Sub-Bytes rounds in order respectively as in equation 10 and 11

then finally XOR the Add-RoundKey in the subkey as in equation in 16:

S = Kn ⊕ S (16)

Transformation process for each round consists of four functions but for the final round, it consists of three.

Figure 1 shows the flow chart of the encryption process of Rinjdael Cipher for key size of 128 bit.

For 192 and 256 key sizes, the rounds are increased from 12 to 14 respectively. While Figure 2

presented the Flowchart for AES 128 Decryption.

5 | African Journal of Academic Publishing in Science and Technology (AJAPST)

Figure 1: Flowchart for AES 128 encryption [9].

6 | African Journal of Academic Publishing in Science and Technology (AJAPST)

Figure 2: Flowchart for AES 128 Decryption [8].

7 | African Journal of Academic Publishing in Science and Technology (AJAPST)

1.3.2 RC6 Cipher

Figure 3 shows the Flowchart for RC6 Encryption Process. RC6 is a block cipher with 128 bits per block b. RC6

allows works with three key lengths of 128, 192, and 256 bits. It is designed to improve RC5 and was submitted

to NIST to be considered as an Advanced Encryption Standard and eventually got to the finals in the competition.

RC6 uses four registers each one of 32 bit and thus more secure than the RC5.

RC6 makes use of three key algorithm elements: key expansion, encryption and decryption. RC6 use key

expansion to widen the key supplied by the user filling an expanded array which is denoted E so that E looks like

array of random binary character's g (Rives et al, 1998). RC6 cipher uses 44 cells of subkeys that are derived from

the keys and called E [0] to E [43]. The length of each subkey is 32 bits.

In RC6, much of its characters are obtained from key that user supplies. The user supplies key to bytes, where 0

≤ l ≤ 255as l represents bytes and characters of (2g+4) are obtained then kept in a round key array E to be encrypted

and decrypted later. Key bytes are put in an array c w-bit words E[0]…. E[c-1]. The first byte of the key is placed

as in E [0], The second byte in E[1] and so on. 2g + 4 are the number of u-bit characters generated for round keys

and these are stored in the array E [0… 2t +3]. To make key length and non-zero integer number equal, zero bytes

are joined. When e = 0, c = 1 and E[0] = 0 the key bytes are loaded into an array E of size c.

 Figure 3: Flowchart for RC6 Encryption Process [10].

8 | African Journal of Academic Publishing in Science and Technology (AJAPST)

1.3.3 Camellia Cipher

Figure 4 presents the Flowchart for RC6 Decryption Process. While Figure 5: Flowchart for

Camellia 128 Encryption Process. Additionally, Figure 6: Flowchart for Camellia 128 Decryption

Process. Developed in 2000in Japan by Mitsubishi and NTT companies, Camellia is a block cipher

with 128 bit per block b. Camellia allows works with three key lengths of 128, 192, and 256 bit.

Camellia is known for its efficiency for software and hardware implementations which makes it

very good for low-cost smart cards to mobile devices. The most important elements of Camellia

are the F-functions which are used to encrypt, decrypt and create helper variables of the key. 128

input bits are grabbed by the F-function, mixes them with subkeys bits and then returns 128 new

bits. The F-function calls are arranged in blocks and each of these blocks comprises of six rounds.

Figure 4: Flowchart for RC6 Decryption Process [11].

9 | African Journal of Academic Publishing in Science and Technology (AJAPST)

Figure 5: Flowchart for Camellia 128 Encryption Process [12].

10 | African Journal of Academic Publishing in Science and Technology (AJAPST)

Figure 6: Flowchart for Camellia 128 Decryption Process.

Results and discussion

The user interface above shows every process of the application. From the moment the user opens the application,

composes, encrypts, and sends a secured message to when the user decrypts the secret message. The application

generates a cypher key for the user by obtaining a passphrase of equivalent key length, with which the user feeds

to it. This dynamic passphrase is used to derive a secret key, which is used for the encryption of the message.

After the encrypted message is sent to the receiver, the application uses the same passphrase which was embedded

in both users' applications to derive a key that matches the secret key that the sender used to send the message.

This process helps in decrypting the message to make it readable. Thus, both encryption and decryption take place

11 | African Journal of Academic Publishing in Science and Technology (AJAPST)

in the application not within the network. In addition, the secret key is not transferred via the network but kept

secret inside the application. Some permission in the application prevents reverse engineering of the application.

Key Generation Time (Encryption)

For encryption, key generation time for each symmetric algorithm was calculated. Table 4 shows key generation

time for each algorithm for encryption. Calculations are in nanoseconds for generating keys while text sizes are

in bytes. The time for generating a key was obtain for each algorithm by calculating the average of the time in

nanoseconds. These averages were used to determine the speed of key generation for each algorithm.

Table 4: Key Generation Time for Each Algorithm (encryption).

Plaintext
AES

128

AES

192

AES

256

CAM

128

CAM

192

CAM

256

RC6

128
RC6192 RC6256

10 129307 163030 233077 36385 49000 48538 32538 38307 43923

20 160269 235847 233692 41869 49154 50769 34847 41308 41077

30 276615 201507 212923 55923 49846 61077 36385 40154 43923

40 335154 271231 347923 56154 45153 50539 31923 40000 59000

50 310769 290769 249385 58384 48308 54615 46000 49077 53308

60 240616 213000 287230 42308 54077 61077 48077 53385 44539

70 284462 341077 392007 52154 57462 57231 50077 70077 56692

80 400769 451154 405308 54770 65077 79154 61924 64615 81077

Key Gen.

Enc.Avg
267245 270952 295193 49743 52260 57875 42721 49615 52942

Figure 7 shows that for key sizes of 128, 192 and 256 bits, AES is four times slower to produce cipher keys when

compared to Camellia and RC6. Camellia and RC6 just about have the same speed to generate keys.

Figure 7: Key Generation Time for Each Algorithm (encryption)

Encryption Time

Encryption time is how long it takes to convert plaintext to ciphertext. Time of encryption was measured for each

algorithm. Table 5 shows encryption timing for each algorithm. Calculations are in nanoseconds for the timings

while text size is in bytes. The time for encrypting a message was obtain for each algorithm by calculating the

average of the time in nanoseconds. These averages were used to determine the speed of encryption for each

12 | African Journal of Academic Publishing in Science and Technology (AJAPST)

algorithm. Figure 8 shows that for key sizes of 128, 192 and 256 bit, AES is slightly slow to encrypt a text when

compared to Camellia and RC6. There is also not much in terms of speed of encrypting a text between Camellia

and RC6.

Table 5: Encryption Time for Each Algorithm.

Plaintext
AES

128

AES

192

AES

256

CAM

128

CAM

192

CAM

256

RC6

128
RC6192 RC6256

10 146323 203769 229231 109777 109561 114154 102385 116532 110461

20 243007 220154 222923 122311 110138 114538 104846 133769 111500

30 232308 227461 309000 108385 111616 120154 131961 132693 113308

40 274000 232153 291462 114538 111770 215961 148308 124846 138615

50 265847 271692 271077 125616 113539 226077 151507 146539 154381

60 268615 281976 285076 117693 127000 287077 151692 180539 307231

70 273007 287230 327539 122311 149231 289000 171461 194077 324815

80 318000 300385 403770 120077 151323 377753 163846 196276 365382

Encryption

Avg
252638 253103 292510 117588 123022 218089 141376 153159 203211

Figure 8: Encryption Time for Each Algorithm.

Key Generation Time (Decryption)

Key generation time for each symmetric algorithm for decryption was calculated. Table 6 shows key generation

time for each algorithm for encryption based on decryption. Calculations are in nanoseconds for generating keys

while text sizes are in bytes. The time for generating a key was obtain for each algorithm by calculating the average

of the time in nanoseconds. These averages were used to determine the speed of key generation for each algorithm.

Figure 9 shows that for key sizes of 128, 192 and 256 bit, AES is about eight times slower to generate cipher keys.

Camellia and RC6 are about the same in terms of speed of generating ciphertext.

Table 6: Key Generation Time for Each Algorithm (decryption).

Plaintext
AES

128

AES

192

AES

256

CAM

128

CAM

192

CAM

256

RC6

128
RC6192 RC6256

10 280016 429536 107446 35847 68923 51307 13015 38845 35539

20 350231 296308 296769 35924 36923 35307 29462 39307 37301

30 233385 235308 264230 46000 51385 51230 34538 39307 35538

40 234616 249446 383615 35385 37153 35923 28924 39539 40538

13 | African Journal of Academic Publishing in Science and Technology (AJAPST)

50 289000 257461 306769 50461 35847 50154 38307 38846 36923

60 317230 200769 339461 49538 41154 49769 39077 40307 49231

70 359000 333846 401769 49230 49769 49462 36461 39307 48693

80 471462 463847 378769 54154 51007 50077 43308 41153 59230

Key

Gen.Dec.Avg
306968 308315 309858 44569 46520 46654 32887 39576 42874

Figure 9: Key Generation Time for Each Algorithm (decryption)

Decryption Time

Decryption time is how long it takes to convert ciphertext to plaintext. Time of decryption was measured for each

algorithm. Table 7 shows decryption timing for each algorithm. Calculations are in nanoseconds for the timings

while text size is in bytes. The time for decrypting a message was obtain for each algorithm by calculating the

average of the time in nanoseconds. These averages were used to determine the speed of decryption for each

algorithm.

Table 7: Decryption Time for Each Algorithm.

Plaintext
AES

128

AES

192

AES

256

CAM

128

CAM

192

CAM

256

RC6

128
RC6192 RC6256

10 175769 246769 233385 35307 62154 49192 30077 103615 56616

20 179385 245000 234616 35923 67693 60230 38846 10800 58385

30 206461 205769 280616 49769 68077 66692 39307 59461 83692

40 204184 235000 289000 49462 73815 68000 39307 63539 99000

50 304153 237692 350231 50077 76386 87693 39539 74692 78077

60 327385 232462 317230 51230 78231 97077 38846 80693 102154

70 409692 415231 359000 50154 95384 101231 40307 83077 110000

80 412692 504769 471462 51307 101154 114308 41153 168692 169531

Decryption

Avg
277465 294837 316943 46653 77862 80553 38423 80576 94682

14 | African Journal of Academic Publishing in Science and Technology (AJAPST)

Figure 10 shows that for key sizes of 128, 192 and 256 bits, AES is about three times slower to decrypt ciphertext

when compared to Camellia and RC6. Camellia and RC6 are just about the same in speed for decrypting a text.

Figure 10: Decryption Time for Each Algorithm

Plaintext and Ciphertext Length

Table 8 shows text count of plaintext and ciphertext. According to findings, plaintext is increased when encryption

is performed by all algorithms. Camellia plaintext length increased more when compared to AES and RC6. In

addition, for key sizes 128-, 192- and 256-bits cipher length increment is constant for AES and RC6. For Camellia,

cipher length changes as key size changes.

Table 8: Plaintext and Ciphertext Length.

Plan

Text

AES

128

AES

192

AES

256

CAM

128

CAM

192

CAM

256

RC6

128

RC6

192
RC6256

10 25 25 25 25 21 25 25 25 25

20 45 45 45 41 41 41 45 45 45

30 45 45 45 65 61 65 45 45 45

40 65 65 65 86 82 86 65 65 65

50 90 90 90 106 102 106 90 90 90

60 90 90 90 118 118 126 90 90 90

70 110 110 110 138 139 142 110 110 110

80 130 130 130 159 159 160 130 130 130

As key sizes increase from 128 to 192 to 256 bits, time to generate cipher keys increases for all three algorithms.

Also, as key sizes increase from 128 to 192 to 256 bits time of encryption and decryption increases for all three

algorithms.

Conclusion

The objectives and questions of this thesis have been met and answered. This thesis was able to meet the goals of

securing SMS by employing symmetric encryptions. The encryption keys generated by each algorithm were

embedded on the application. Both applications for sender and receiver have a passphrase embedded inside them.

15 | African Journal of Academic Publishing in Science and Technology (AJAPST)

That passphrase is used to generate a key and encrypt a message so that when the message is sent to receiver,

receiver is able to regenerate the key because it also has the required passphrase embedded in it. It uses the

passphrase to regenerate the key and matches it for decryption of message. Therefore, encryption keys are not

transmitted over the network.

This thesis also determined which of the symmetric methods is suitable for securing SMS when it boils to how

fast secured SMS will be sent and read. In summary, after studying a handful of existing solutions in literature

three symmetric algorithms were selected. These algorithms were based on how effective they are when it comes

to mobile devices that have low storage space and computational resources. The symmetric algorithms were

analyzed, implemented and evaluated based on encryption, decryption and key generation time.

From the experimental results, it was found that Camellia and RC6 of key length 128, 192 and 256 bit is faster

generating encryption keys, encrypting and decrypting text when compared to AES of equivalent key length. On

the other hand, Camellia and RC6 of key size 128 and 256 are just about the same in terms of generating encryption

keys, encrypting and decrypting text. Plaintext increases in length after encryption for all three algorithms. The

length of cipher text of AES and RC6 are constant for key sizes 128, 192 and 256 bits while that of Camellia

changes for equivalent key sizes.

In conclusion, when it comes down to efficiency in time for key generation, encryption and decryption of Camellia

and RC6 is faster than AES. So, it is fair to conclude that both Camellia and RC6 should be use more often as it

provides security, authentication, integrity, fast in generating keys and also fast in encryption and decryption of

SMS than AES. This thesis is only implemented for Android mobile phones. Future work should extend it to other

operating systems that will make it work on other operating systems other than Android. In addition, access control

like biometrics should be used by authorized users of the application to boost security of the application.

References

[1] N. M. Coe and C. Yang, “Mobile Gaming Production Networks, Platform Business Groups, and the Market

Power of China’s Tencent,” Ann. Am. Assoc. Geogr., vol. 112, no. 2, pp. 307–330, Feb. 2022, doi:

10.1080/24694452.2021.1933887.

[2] L. Lo Presti, G. Maggiore, V. Marino, and R. Resciniti, “Mobile instant messaging apps as an opportunity

for a conversational approach to marketing: a segmentation study,” J. Bus. Ind. Mark., vol. 37, no. 7, pp.

1432–1448, May 2022, doi: 10.1108/JBIM-02-2020-0121.

[3] I. Alam, S. Khusro, A. Rauf, and Q. Zaman, “Conducting Surveys and Data Collection: From Traditional to

Mobile and SMS-based Surveys,” Pakistan J. Stat. Oper. Res., vol. 10, no. 2, p. 169, Aug. 2014, doi:

10.18187/pjsor.v10i2.758.

[4] A. Singhal, A. Jain, and L. Kharb, “HacXBear: An Android App to Safeguard Mobile Theft,” 2023, pp. 487–

499. doi: 10.1007/978-981-99-3963-3_37.

[5] F. F. M. Yahia and A. M. Abushaala, “Cryptography using Affine Hill Cipher Combining with Hybrid Edge

Detection (Canny-LoG) and LSB for Data Hiding,” in 2022 IEEE 2nd International Maghreb Meeting of the

Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), IEEE,

May 2022, pp. 379–384. doi: 10.1109/MI-STA54861.2022.9837714.

[6] M. Shahrier and A. Hasnat, “Route optimization issues and initiatives in Bangladesh: The context of regional

significance,” Transp. Eng., vol. 4, no. February, p. 100054, 2021, doi: 10.1016/j.treng.2021.100054.

[7] P. Jindal, A. Kaushik, and K. Kumar, “Design and Implementation of Advanced Encryption Standard

Algorithm on 7th Series Field Programmable Gate Array,” in 2020 7th International Conference on Smart

Structures and Systems (ICSSS), IEEE, Jul. 2020, pp. 1–3. doi: 10.1109/ICSSS49621.2020.9202114.

[8] K. Muttaqin and J. Rahmadoni, “Analysis And Design of File Security System AES (Advanced Encryption

Standard) Cryptography Based,” J. Appl. Eng. Technol. Sci., vol. 1, no. 2, pp. 113–123, May 2020, doi:

10.37385/jaets.v1i2.78.

[9] A. Altigani, S. Hasan, B. Barry, S. Naserelden, M. A. Elsadig, and H. T. Elshoush, “A Polymorphic Advanced

Encryption Standard – A Novel Approach,” IEEE Access, vol. 9, pp. 20191–20207, 2021, doi:

10.1109/ACCESS.2021.3051556.

[10] S. A. Ajagbe, O. D. Adeniji, A. A. Olayiwola, and S. F. Abiona, “Advanced Encryption Standard (AES)-

Based Text Encryption for Near Field Communication (NFC) Using Huffman Compression,” SN Comput.

Sci., vol. 5, no. 1, p. 156, 2024, doi: 10.1007/s42979-023-02486-6.

[11] X. Li et al., “Thermal‐Triggered Phase Separation and Ion Exchange Enables Photoluminescence Tuning of

Stable Mixed‐Halide Perovskite Nanocrystals for Dynamic Display,” Laser Photon. Rev., Jan. 2024, doi:

10.1002/lpor.202301244.

[12] B. Langenberg, H. Pham, and R. Steinwandt, “Reducing the Cost of Implementing the Advanced Encryption

Standard as a Quantum Circuit,” IEEE Trans. Quantum Eng., vol. 1, pp. 1–12, 2020, doi:

10.1109/TQE.2020.2965697.

